

（as）

（a）
（a）
（a）

Our Ladys Catholic College

 ）Our Lady＇s Catholic College

 \title{

 \footnotetext{
}

\square
 \square

 [^0] ．}

[^1]

\square
都

\qquad

\qquad
\qquad

 Cles）

 Cles）}
 Cles）}（ Morecamberoad，Lancaster，La12rx
（ Morecamberoad，Lancaster，La12rx

－

Department Vision and Values

We firmly believe that everybody can be a mathematician and that all students have the right to experience mathematics in a safe but academically challenging environment.

It is our belief that every student in mainstream education has the potential to successfully engage with the GCSE course. There is no evidence that compels us to believe that there is anything innate in our students that means they cannot be successful in our classrooms. We are aware that students may have had experiences in mathematics that has led them to believe that this isn't the subject for them. these cases, we need to get students into a success/motivation cycle. We do not believe that engagement in maths needs to come from elsewhere; from gratuitous examples of its use in "real-life" or from activities
 where the maths takes a back seat. We believe that the ability to overcome a problem, to explore a fascinating pattern and grapple with complex ideas are possible to be endorphin-rich, enjoyable experiences which all students are entitled to. If they are lacking motivation, it is our job to ensure they are having success. If, in the short term, it means making them feel successful through whatever means necessary, then we know that this can pay off in the long run and is worth the initial investment in time. Where possible this feeling of success will come from appropriately pitching the content from the curriculum but if it means going "off-script" for a short period of time with a greater good in mind then so be it.

Implementation

We aim to turn our vision into reality by focussing on three key areas:

1. Evidence-based Teaching and Learning
2. Ambitious Curriculum for All
3. Assessment to improve

2. Ambitious Curriculum for All

Curriculum Intent

We strongly believe in providing students with an ambitious mathematics curriculum that takes into account their prior attainments; equips them with essential skills and knowledge, sparks curiosity, and prepares them effectively for both daily life and future careers. We place heavy emphasis in achieving numerical fluency in Year 7 and our mathematics curriculum aims to offer students the following opportunities:

- Cultivate fluency in foundational mathematical concepts: Through frequent and diverse practice, students will progressively engage with increasingly complex problems. This approach will enable them to develop a deep conceptual understanding, as well as the ability to recall and apply their knowledge rapidly and accurately
- Foster mathematical reasoning: Students will learn to think mathematically by exploring various lines of inquiry, formulating conjectures about relationships and generalizations, and constructing arguments, justifications, and proofs using the language of mathematics
- Enhance problem-solving skills: Students will develop the capacity to apply their mathematical knowledge to a wide range of routine and non-routine problems. As they progress, they will acquire more sophisticated problem-solving techniques, including the ability to break down complex problems into a series of manageable steps. They will also develop perseverance in their quest for solutions
- Foster effective communication and justification: Our curriculum will emphasize the development of oracy students' ability to communicate, justify, argue, and prove mathematical ideas using appropriate vocabulary. This skill will enable them to express their thoughts clearly and effectively in a mathematical context
- Promote character development: Our curriculum recognizes the importance of character education. By engaging with mathematics, students will develop valuable traits such as resilience, confidence, and independence. These qualities will enable them to make positive contributions not only within the school environment but also in their local community and the broader world
- In summary, our mathematics curriculum aims to empower and challenge students to realise their absolute best by providing them with a rich, engaging, and comprehensive learning experience. We strive to ignite their passion for mathematics, equip them with the necessary skills and knowledge necessary to become a successful member of our society in the $21^{\text {st }}$ century.

Key Stage 3 Curriculum Overview

Year 7	Week 1 (Wed)	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15 (12:30 finish)
Autumn	Baseline Assessments	Unit 1 - Place Value				Unit 2 - Calculations				Unit 3 - Negatives			Unit 4 - Fractions		
migs		F	F	F	5	F	F	F	5	F	F	5	F	F	F
Spring	Unit 4 - Fractions		Unit 5 - Indices					Unit 6 - Algebra							
migs	F	s	F	F	F	F	5	F	F	F	F				
Summer	Unit 6 - Algebra	Unit 7 - Measures				Unit 8 - Area					Unit 9 - FDP				
MIGS	s	F	F	F	s	F	F	F	F	s	F	F	s		

Year 8	Week 1 (Wed)	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15 (12:30 finish)
Autumn	Assessments	Unit-1 Expressions						Unit 2 - Angles					Unit 3 - Formulae		
migs		F	F	F	F	F	5	F	F	F	F	5	F	F	5
Spring	Unit 4 - Area					Unit 5 - Equations					Unit 6				
migs	F	F	F	F	s	F	F	F	F	5	F				
Summer	Unit 6 - Number Theory and Sequences				Unit 7 - Co-ordinates					Unit 8 - Statistics					
migs	F	F	F	s	F	F	F	F	s	F	F	F	5		

Year 9	Week 1 (Wed)	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15 (12:30 finish)
Autumn	Unit 1 - Non Calculator FDP						Unit 2 - Linear Graphs				Unit 3 - Transformations			Unit 4 - Non-Calculator Ratio \& Proportion	
migs	F	F	F	F	F	s	F	F	F	5	F	F	s	F	F
Spring	Unit 4 - Non-C Ratio \& Prop	culator ortion	Unit 5 - Angles \& Similarity				Unit 6 - Trigonometry				Unit 7				
migs	F	5	F	F	F	5	F	F	F	5	F				
Summer	Unit 7 - Probability			Unit 8 - Maps \& Constructions					Unit 9 - Calculations						
migs	F	F	s	F	F	F	F	5	F	F	F	F	s		

Key Stage 4 Curriculum Overview

Year 10	Week 1 (Wed)	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15 (12:30 finish)
Autumn	1. Equations and Inequalities			2. Congruence, Similarity and Enlargement		3. Right Angled Triangles			4. Angles and Bearings	5. Simultaneous Equations			6. Circles and Volume		
MIGS	F	F	s	F	s	F	F	s	FS	F	F	s	F	F	s
Spring	7. Vectors	8: Ratios and Fractions		9. Percentages and Interest		10. Data			11. Probability						
migs	Fs	F	s	F	s	F	F	5	F	F	s				
Summer	12. Number		13. Sequences			14. Indices and Roots			Exams		15. Problem solving		Maths Careers		
migs	F	s	F	F	s	F	F	s	s	s	F	F	F		
Year 11	Week 1 (Wed)	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15 (12:30 finish)
Autumn	1. Solving Equations and Inequalities		2.	Linear and Non-Linear Graph			3. Multiplicative Reasoning		4. Rearranging Equations and Using Functions		5. Ged	ometric Reaso	oning	6. Algebraic Reasoning	7. Transforming and Constructing
migs	F	s		F	F	s	F	s	F	s		F	s	F	s
Spring	7. Transforming and Constructing	8. Probability and statistics		Exam Practice 1		$\begin{gathered} \text { Feeback and } \\ \text { re-teach } \end{gathered}$	Exam Practice 2		$\begin{array}{\|c\|} \text { Feeback and } \\ \text { re-teach } \end{array}$	Exam Practice 2					
migs	FS	F	s	s	s	F	s	s	FS	s	s				
Summer	Feeback and re-teach	Exam Practice 1		$\begin{gathered} \text { Feeback and } \\ \text { re-teach } \end{gathered}$	Exam Practice 1		$\begin{gathered} \text { Feeback and } \\ \text { re-teach } \end{gathered}$	Exams							
MIGS	F	s	s	F	s	s									

Key Stage 5 Overview

Year 12	Week 1 (Wed)	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15 (12:30 finish)
Autumn	Unit 1: Algebra and functions, Unit 1: Statistical sampling, Unit 2a: Data presentation and interpretation, Unit 6: Quantities and units in mechanics, Unit 7a: Kinematics 1 (constant acceleration)								Unit 2: Coordinate geometry in the (x, y) plane, Unit 3: Further algebra, Unit 2b: Data presentation and interpretation, Unit 7b: Kinematics 1 (constant acceleration)						
migs	F	F	F	s	F	F	F	s	F	F	F	s	F	F	s
Spring	Unit 4: Trigonometry, Unit 5: Vectors (2D), Unit 3: Probability, Unit 4: Statistical distributions, Unit 8a: Forces \& Newton's laws					Unit 6: Differentiation, Unit 7: Integration, Unit 5a: Statistical hypothesis testing, Unit 8b: Forces \& Newton's laws									
migs	F	F	F	F	5	F	F	5	F	F	5				
Summer	Unit 8: Exponentials and logarithms, Unit 5b: Statistical hypothesis testing, Unit 9: Kinematics 2 (variable acceleration), Revision (AS level)						Exams			Unit 1: Proof, Unit 2: Algebraic and partial fractions					
mics	F	F	5	F	F	5	5	5	s	F	F	F	5		
Year 13	Week 1 (Wed)	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15 (12:30 finish)
Autumn	Unit 3: Functions and modelling, Unit 4: Series and sequences, Unit 5: The binomial theorem, Unit 1: Regression and correlation, Unit 1: Regression and correlation								Unit 6: Trigonometry, Unit 7: Parametric equations, Unit 2: Probability, Unit 5: Forces at any angle						
mics	F	F	F	s	F	F	F	s	F	F	F	s	F	F	s
Spring	Unit 8: Differentiation, Unit 8: Differentiation, Unit 3a: The Normal distribution, Unit 6: Applications of kinematics						Unit 10: Integration (part 1), Unit 11: Integration (part 2), Unit 3b: The Normal distribution, Unit 7: Applications of forces								
migs		F		F		s		F	F		5				
Summer	Unit 12: Vectors (3D), Unit 3c: The Normal distribution, Unit 8: Further kinematics, Revision (A level)								Exams						
MIGS															

Y7 - Y13 Curriculum Content

Year 7		Know and Know how to
Topic	Skills	Learning Objectives (small steps)
7.1 Place Values	Writing numbers in figures, up to the millions.	Know 1. that decimal point never moves and operations on numbers moves the figures Know how to 1. Identify the value of the digit in a given number 2. Write down a number with given value of place value. E.g. Write a number with a value of 600 or Write a 5 -digit number with a value of 3000 . Is it possible to write a 4 -digit number with a value of 40000 ? 3. Order integer numbers
7.1 Place Values	Converting between fractions and decimals using the place value structure.	Know 1. The anatomy of a fraction Know how to 1. Say and Write simple fractions (Mixed, Ones, tenths, hundredths and thousandths) as decimals. E.g. $3 / 10$ as $0.3,7$ and $9 / 10$ as 7.9 2. Write decimal numbers as Mixed numbers or fractions. 3. Write down the value of a chosen digit in a given number 4. Say and Write complex fractions (e.g. 203/1000) as decimals
7.1 Place Values	Recognising different types of decimals and using recurring decimal dot notation.	Know 1. The terms - Identify Terminating, Recurring and Irrational numbers Know how to 1. Write their own T, R and I decimal numbers 2. Add Recurring decimals 3. identify when the square root sign produces irrational numbers
7.1 Place Values	Using inequality symbols to order and compare decimals and fractions using place value.	Know 1. and recognise the inequality signs Know how to 1. Use the inequality signs to make true statements 2. Compare decimals and use the correct inequality signs 3. Order a group of decimals 4. work out the intervals of a number line 5. correctly place a number on a number line 6. Write a decimal number between two given decimals (Midpoint)
7.1 Place Values	Rounding to the nearest integer or a given number of decimal places.	Know 1. d.p. stands for rounded to \qquad decimal places 2. sf stands for rounded to \qquad significant figures Know how to 1. use a number line to round decimals off integers 2. Use the Line and Decider method to round decimals to integers 3. use the line and Decider method to round to decimals to a given number of decimal places 4. Work out the smallest and biggest number a number could have been before it was rounded
7.1 Place Values	Rounding integers and decimals to a given number of significant figures.	Know how to 1. Identify the first significant figure in any given integer 2. Identify any significant figures in any given integer
7.2 Calculations	Using the column method to add and subtract with decimals	Know how to 1. Set up Decimal addition and subtraction by lining up the decimal point 2. Add and subtract decimals using the column method

7.2 Calculations	Using short division to convert fractions to decimals	Know 1. Division can be expressed as a fraction and vice versa Know how to 1. Set up a short division 2. Complete a short division with a terminating decimal 3. Divide Integers with decimal answers 4. Divide Decimal by an integer
7.2 Calculations	Multiplying and dividing by $10,100,1000$. Extension: Multiplying \& dividing by $0.1,0.01$ etc	Know 1. The connection between the Place Value table and Multiplying dividing by powers of 10 Know how to 1. Multiplying and dividing by $10,100,1000$. 2. What happens when you multiply or divide a number by 10,100 and 1000 3. Multiplying by $0.1,0.01$ etc 4. Dividing by $0.1,0.01$ etc
7.2 Calculations	Multiplying decimals using related calculations	Know how to 1. Use a base calculation to work out answers to similar questions
7.2 Calculations	Consider the effect of dividing by $0.5,0.1,0.01$ and 0	Know 1. The effect of dividing by $0.5,0.1$ and 0 Know how to 1. use the effect of dividing by $0.5,0.1,0$
7.2 Calculations	Consider the effect of changing either divisor or dividend in a calculation - how does the answer change?	Know 1. and describe what happens when the divisor or dividend increases 2. and describe what happens when the divisor or dividend decreases
7.3 Negatives	Place negative numbers in order of size	Know how to 1. order negative numbers 2. order negative decimal numbers 3. Compare negative numbers using inequality sign
7.3 Negatives	Calculate simple additions and subtractions by considering journeys along the number line	Know how to 1. Carry out directed numbers calculations using empty number line Addition) Use Starting number method. E.g. $-5+6$ means start at -5 and go up 6 . 2. Create or complete zero-sum pairs 3. Carry out directed numbers calculations using empty number line Subtraction) Use Starting number method. E.g. $-5+6$ means start at -5 and go up 6 .
7.3 Negatives	Add or subtract a negative number	Know how to 1. add negative numbers with "adding a negative number " notation. E.g. $7+-4$. Do not use two negative makes a positive rule! Use algebra tiles! 2. Subtract Negative numbers Care needs to be taken with this module as it is one of the most difficult skills to correct!
7.3 Negatives	Multiply and divide with negative numbers	Know 1. the definition of Product Know how to 1. multiply two more integers 2. predict the sign of the product
7.3 Negatives	Mixed practice calculating with all four operations	Know how to 1. Add, subtract, multiply and divide integers
7.3 Negatives	Extension: Add, subtract, multiply and divide with negative decimals	Know how to 1. Add, subtract, multiply and divide simple $+/-$ decimal numbers
7.4 Fractions	Recognising that 1 whole is made up of a number of equal parts.	Know 1. parts of a fractions Know how to 1. say fractions correctly 2. write down fractions from shaded diagrams place fractions on a number line 3. understands how one whole can be represented by a fraction 4. change one whole in fractions calculations

7.4 Fractions	Convert between mixed numbers and improper fractions.	Know 1. that amount bigger than 1 can be represented by improper fractions and mixed numbers Know how to 1. Convert improper fractions to Mixed Number 2. Convert Mixed Numbers to improper fractions
7.4 Fractions	Find a fraction of an amount. Solve reverse fraction problems.	Know 1. The word "of" can mean multiply 2. Calculators has fraction, mixed number and S / D button Know how to 1. find fractions of an amount using non-calculator method. $1 \%, 10 \%$ etc 2. find fractions of an amount using a calculator
7.4 Fractions	Identify equivalent fractions \& simplify fractions.	Know: 1. that equivalent Fractions have the same value Know how to: 1. create equivalent fractions by multiplying or dividing 2. simplify fractions to their simplest form
7.4 Fractions	Convert between fractions and decimals using equivalent fractions, short division \& place value.	Know: 1. Fractions are the same as division Know how to: 1. convert fractions into decimals by changing the denominators into powers of ten 2. convert fractions into decimals by cancelling first then changing the denominator into powers of ten 3. Convert fractions into decimals by short division 3. convert decimals into fractions using place value tables
7.4 Fractions	Add and subtract fractions with like or unlike denominators.	Know: 1. Fraction can be added or subtracted is the denominators are the same Know how to: 1. add fractions with the same denominator 2. add fractions with different denominators
7.4 Fractions	Multiply fractions, identify reciprocals and divide fractions.	Know: 1. "lots of" and "of" means multiply 2. to always check the fraction answers are in their simplest form and the correct format (e.g. mixed number) 3. what a reciprocal means 4. that dividing by a number is the same as multiplying by its reciprocal Know how to: 1. multiply fractions without common factors 2. multiply fractions with common factors with cancelling before or after multiplying 3. Multiply an integer and a fraction 4. Find the reciprocal of a fraction/integer 5. Divide fractions by fractions and integers
7.4 Fractions	Extension: use all four operations with fractions and mixed numbers.	Know: 1. Structure of a mixed number Know how to: 1. multiply fractions without common factors 2. multiply fractions with common factors with cancelling before or after multiplying 3. Multiply an integer and a fraction 4. Find the reciprocal of a fraction/integer 5. Divide fractions by fractions and integers 6. carry out all four operations with Mixed numbers
7.4 Fractions	Combining skills from the previous 3 chapters, calculate fluently with fractions, decimals and negatives.	
7.5 Indices	Use index notation with positive, negative, fractional and decimal bases.	Know how to 1. Use integer notation with positive integer bases 2. Use integer notation with fractional and decimal bases 3. Use integer notation with negative bases
7.5 Indices	Recognise and use zero and negative indices.	Know how to 1. Use integer notation with zero and negative indices

7.5 Indices	Use the multiplication, division and power laws of indices.	Know how to 1. Multiply with indices of the same base 2. Divide with indices of the same base 3. Index Law: Power law 4. Combine index laws
7.5 Indices	Calculate roots with integer and decimal answers. Estimate square roots. Extension: roots of negative and fractional numbers.	Know how to 1. Find integer roots 2. Understand indices notation for roots 3. Define a surd 4. Find decimal roots 5. Estimate roots 6. Find roots of negative numbers 7. Understand that negative numbers cannot be square rooted 8. Find roots of fractions
7.5 Indices	Use the order of operations correctly and know how to use a calculator with indices, roots, fractions and negatives.	Know 1. and understand BIDMAS Know how to 1. use order of operations (BIDMAS) not involving indices 2. use order of operations (BIDMAS) involving indices 3. Use a calculator with indices, roots, fractions and negatives
7.6 Intro to Algebra	Recognise like terms. Add and subtract terms to simplify expressions.	Know how to 1. Identify like and unlike terms 2. Add and subtract like terms containing the same variable and no indices 3. Add and subtract like terms including a variable and an integer (no indices) 4. Collect like terms including multiple variables (no indices)
7.6 Intro to Algebra	Multiply variables, using index notation and the laws of indices.	Know how to 1. Simplify products of integers and different variables 2. Simplify products of integers and variables, including a repeated variable. Write in index notation. 3. Simplify products including a variety of repeated variables, and understand which are like terms to be collected into the same index. 4. Understand the difference between simplifying by adding and simplifying by multiplying. 5. Collecting variables with the same base into one power 6. Raising a variable with a power to another power 7. Combining index laws
7.6 Intro to Algebra	Extension: Multiply and divide fractions involving variables.	Know how to 1. Multiply fractions with a simple algebraic numerator or denominator by a simple numerical fraction or integer. 2. Multiply fractions containing different variables 3. Find the reciprocal of an algebraic fraction 4. Dividing simple algebraic fractions containing different variables
7.6 Intro to Algebra	Use all four operations with variables.	Know how to 1. Write divisions in algebraic notation as a fraction 2. Simplify mixed calculations using standard algebraic notation
7.6 Intro to Algebra	Substitute positive and negative numbers into expressions.	Know how to 1. Substitute positive integers into simple 1 and 2 step expressions 2. Substitute negative integers into simple 1 and 2 step expressions 3. Substitute fractions into simple expressions 4. Substitute integers into more complex expressions
7.6 Intro to Algebra	Solve equations involving one or two steps.	Know how to 1. Solving one-step equations by addition and subtraction 2. Solving one-step equations by multiplication and division 3. Solving one-step equations with indices and roots 4. Solving two-step equations 5. Solving two-step equations involving fractions
7.7 Working with Measures	Estimate the answer to calculations \& identify error intervals of rounded measurements.	Know how to 1. Round numbers to 1 significant figure. 2. Estimate calculations. 3. Calculate error intervals. 4. Calculate upper and lower bounds.

7.7 Working with Measures	Work with large and small numbers and measures written in standard form.	Know 1. location of the standard form button Know how to 1. Express numbers in standard form. 2. Convert from standard form to ordinary numbers.
7.7 Working with Measures	Estimate metric lengths \& heights. Convert between metric units for length.	Know 1. Units of metric lengths 2. Lengths and Heights uses the same units Know how to 1. Estimate most likely units e.g. A car would more likely be 3 m long rather than 3 cm long. 2. Understand metric conversions e.g. $100 \mathrm{~cm}=1 \mathrm{~m}$. 3 . Convert metric lengths e.g. How many m are there in 2.5 km ? 4. Converting metric lengths with standard form.
7.7 Working with Measures	Calculate perimeters, including the circumference or circles. Write expressions for lengths \& perimeters. Solve equations involving perimeter.	Know how to 1. Calculate perimeters of shapes. 2. Calculate missing side lengths of compound shapes. 3. Calculate the perimeter of compound shapes. 4. Calculate missing side lengths given the perimeter. 5. Write an expression for perimeter. 6. Understand the diameter and radius of a circle. 7. Calculate the circumference of a circle. 8. Form and solve equations with perimeter.
7.7 Working with Measures	Convert between units of time and calculate time intervals. Extension: calculate speeds, distances and times.	Know 1. Units of time Know how to 1. Convert between units of time. 2. Convert between 24 hour and 12 -hour clock formats. 3. Calculations with time. 4. Calculate speed, distance and time.
7.8 Shapes, Area \& Pythagoras	Recognise parallel, perpendicular and equal length lines. Construct squares. Recognise quadrilaterals by their properties.	Know: 1. the different names for the types of quadrilateral 2. the markings to indicate parallel lines on a shape 3. that perpendicular lines will create a right angle 4. the meaning of symmetry vs rotational symmetry Know how to 1. Construct squares and other shapes with correct mathematical notation to show parallel lines and equal line lengths 2. To draw lines of symmetry on a shape 3. To find the order of rotational symmetry in a shape 4. To identify a quadrilateral based on the listed properties of the shape
7.8 Shapes, Area \& Pythagoras	Know that area is measured in squares. Estimate areas using square $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$, and km . Extension: Convert between metric areas.	Know: 1. the difference between $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$ 2. the meaning of the notational markings to show equal side lengths in a shape 3. to label the units of area as "squared" Know how to: 1. Calculate the area of squares (inc. when only given one side length) 2. Calculate the area of rectangles 3. Convert between mm, cm and m . 4. Find the area of a square or rectangle with different units for length, e.g. 20 mm side and a 4 cm side.

7.8 Shapes, Area \& Pythagoras	Find the area of parallelograms, triangles, trapezia, compound shapes and circles.	Know: 1. the formula to work out the area of triangle 2. the formula to work out the area of a parallelogram 3. the formula to work out the area of trapezia Know how to: 1. Calculate the area of triangles (inc. extreme scalene triangles) 2. Calculate the area of parallelograms 3. Calculate the area of trapezia 4. Calculate the area of rectilinear shapes (L shapes) by breaking them into two smaller rectangles 5. Calculate the area of compound shapes that are composed of two different shapes, e.g. a triangle and a rectangle.
7.8 Shapes, Area \& Pythagoras	Use Pythagoras to calculate diagonal lengths.	Know: 1. the Hypotenuse length in a right-angle triangle 2. the Pythagoras formula Know how to: 1. use the Pythagoras formula to find the Hypotenuse when given the two other sides 2. find a short length when given the Hypotenuse and one other side of a right-angle triangle 3. apply Pythagoras to real-life examples to find a missing length, e.g. a ladder against a wall
7.9 Fractions, Decimals \& Percentages	Compare and order fractions and decimals. Extension: Convert recurring decimals to fractions.	Know: 1. The bigger the denominator, the smaller the unit 2. Apart from the very simple fractions, you should make sure the denominators are the same when you are comparing fractions 3. A fraction is bigger than 1 if the Denominator is bigger than Numerator Know how to: 1. Compare fractions and mixed number using the inequality signs 2. Convert decimals into fractions or Mixed Numbers 3. Compare fractions and Mixed Numbers with decimals
7.9 Fractions, Decimals \& Percentages	Convert between fractions, decimals \& percentages \& compare and order them.	Know: 1. that percentages more than 100% will result in number bigger than 2. that Percentages, fractions and Decimal are all interconnected and any number in one of these formats can be converted into the other two Know how to: 0) How to input a fraction into a scientific calculator 1. Convert percentages into fractions and Mixed number in their simplest form 2. Convert any fractions (with factors of ten as denominator) into percentages without a calculator 3. Convert any fractions (non-simplest form) into percentages without a calculator 4. Convert fractions into percentages in pictorial form 5. Convert percentages into decimals 6. Convert any decimals into Percentages 7. Convert decimals into percentages 8. Convert fractions into decimals using a calculator using a calculator or short division
7.9 Fractions, Decimals \& Percentages	Calculate a percentage of an amount mentally and using decimal multipliers.	Know: 1. "percentage of" means multiply by the decimal equivalent Know how to: 1. find percentage of an amount by chunking ($23 \%=10 \%+10 \%+1 \%+1 \%+1 \%)$
7.9 Fractions, Decimals \& Percentages	Extension: Calculate percentage changes using decimal multipliers.	Know: 1. "percentage of" means multiply by the decimal equivalent Know how to: 0) write any percentage increase as a decimal multiplier 1. increase an decrease an amount by a percentage change 2. Distinguish the different multipliers for Finding the percentage of an amount, Increasing and deceasing by a given percentage. 3. Extract information from worded questions for calculating amount or percentage change

	Year 8	Know and Know how to
Topic	Skills	Learning Objectives (small steps)
8.1 Expressions	Simplify expressions by collecting like terms.	Know 1. Algebraic terms such as Expressions, Terms, variables, unknown 2. Algebraic verbs such as collecting, simplify 3. any letters can represent any value and that different letters represent different values Know how to 1. Collect (only) like terms with positive and negative terms 2. Separate expressions with different terms 3. Collect like terms with two more types of variables 4. Write lengths and perimeters as algebra expressions. 5. Distinguish terms involving indices 6. Collect like terms with different indices
8.1 Expressions	Multiply expressions using index notation and the laws of indices.	Know how to 1. Multiply variables with positive coefficients and indices 2. Multiply variables with positive and negative coefficients and indices 3. Use the index Power Law with coefficient 4. Use the index Power Law with coefficient
8.1 Expressions	Simplify algebraic fractions and divide terms. Simplify expressions using all four operations.	Know how to 1. simplify algebraic fractions with single variables of power 1 2. simplify algebraic fractions with single variables of power 2 or more 3. simplify algebraic fractions with multiple variables of power 2 or more 4. simplify expressions with all four operations
8.1 Expressions	Use all four operations with variables and the order of operations to write expressions with and without context.	Know how to 1. Write expressions from function machines involving four operations 2. Write more complex expressions from function machines involving four operations and indices
8.1 Expressions	Multiply a term over a bracket. Factorise an expression into a single bracket. Extension: multiply out brackets and simplify. Write expressions for area.	Know 1. The process of factorising is the reverse of expanding brackets 2. the difference between factorise and fully factorise Know how to 1. Expand single brackets using the grid method (positive outside with coefficient) 2. Expand single brackets using the grid method (negative outside with coefficient) 3. find the HCF of two numbers 4. find the HCF of a number and a algebraic term 5. find the HCF of algebraic terms with indices 6. apply expanding brackets in solving area problems
8.2 Angles	Describe angles using three letter codes. Recognise types of angles and the notation for equal angles.	Know 0 . Three letter Angle notation 1. the definition of angle, quarter turn, half turn and full turn and their degrees equivalent 2. the degree symbol 3. that there are other ways of measuring angles other than degrees 4. Types of angles - acute, obtuse and reflex 5. Angles that are the same are marked with double arcs 6. definition of an right angle and its symbol 7. the Greek letter Theta is often use to denote angles

8.4 Area, Volume \& 3D	Review how to calculate the area of triangles, parallelograms and trapezia. Write algebraic expressions for the area of shapes.	Know Know How to 1. write an algebraic expression for area for any simple shapes 2. Work out the sides of squares and parallelogram when the area is given
8.4 Area, Volume \& 3D	Calculate the area of circles, semi-circles and quarter circles. Find the area of shaded regions and compound shapes. Write expressions for the area of compound shapes.	Know 1. the formula of a circle Know How to 1. calculate the area of a semi-circle 2. calculate the area of a quarter circle 3. Find the area of shaded regions that contain circle 4. calculate the area of compound area with circular parts
8.4 Area, Volume \& 3D	Recognise faces, vertices \& edges. Name 3D shapes and know the difference between a pyramid and prism. Recognise and draw the nets of 3D shapes. Calculate the surface area of cuboids.	Know 1. the definition of prism (excludes cylinder) 2. the definition of a face 3. the definition of an edge 4. the definition of a vertex(vertices) 5. the definition of a net Know How to 1. name prisms according to the shape of the cross-sectional area 2. name pyramids according to the shape of the cross-sectional area 3. draw nets of 3D shape 4. work out the name of the 3D shape from their nets 5. work out the dimension of a 3D shape from its net 6. calculate the surface area of a cuboid
8.4 Area, Volume \& 3D	Recognise units for volume and capacity. Calculate the volume of cuboids. Calculate the volume of prisms and cylinders.	Know 1. the definition of volume 2. the definition of a meter cube 3. the definition of capacity 4. the metric units of capacity 5. the format of the units for lengths, areas, volume and capacity 6. the formula of volume of prisms Know how to 1. work out the volume of cuboids 2. work out the volume of prisms 3. work out the volume of cylinders
8.5 Forming \& Solving Equations	Review how to solve equations involving one operation. Solve equations involving roots and indices.	Know 1. the definition of expressions, formula and equation. 2. Solving means to find the value of the unknown. Know How to 1. solve one-step equation by addition and subtraction 2. solve one-step equation by division and multiplication 3. solve one-step equation involving negative coefficients 4. solve one-step equation involving decimal coefficients (multiply first) 5. solve one-step equation involving $\times 2=$ 6. solve one-step equation involving $\times 3=$ 7. solve one-step equation involving root $\mathrm{x}=$

8.6 Number Theory \& Sequences	Recognise expressions that result in odd numbers, even number or multiples of a number.	Know 1. Algebraic notations for odd and even numbers. 2. Algebraic notations for multiples of a given number. Know how to 1. Write expressions in algebraic form for even numbers. 2. Write expressions in algebraic form for odd numbers. 3. Write expressions in algebraic form for multiples of any given number. 4. Determine whether an expression would fit certain criteria e.g. If a was a positive integer would $2 \mathrm{a}+4$ always be an even number? 5. Simple proof e.g. Show that $4(a+5)+5(a+5)$ is always a multiple of 9 .
8.6 Number Theory \& Sequences	Identify and use the term-to-term rules for arithmetic, geometric and Fibonacci style sequences.	Know 1. What linear sequences are. 2. What non-linear sequences are. 3. Triangle numbers. 4. Geometric sequences. 5. Fibonacci sequences. Know how to 1. Find term-to-term rules for linear sequences. 2. Find term-to-term rules for Non-linear sequences. 3. Find term-to-term rules for Geometric sequences. 4. Continue sequences given the first term and the term-to-term rule. 5. Continue sequences. 6. Find missing terms in sequences. 7. Continue triangle numbers. 8. Continue Fibonacci sequences. 9. Determine the type of sequence.
8.6 Number Theory \& Sequences	Generate sequences from an nth term rule. Find the nth term rule for an arithmetic sequence. Determine whether a particular number will appear in a sequence.	Know how to 1. Substitute into the nth term formula to find the first 5 terms of a sequence. 2. Substitute into the nth term formula to find any term in a given sequence. 3. Find the nth term of an increasing linear sequence. 4. Find the nth term of a decreasing linear sequence. 5. Determine whether a term is in a given sequence from the nth term of the sequence.
8.7 Functions, Co-ordinates \& Graphs	Recognise a function written in algebra and work out tables of values.	Know 1. definition of a function Know how to 1. Produce a table of values from a given function 2. Change from function machine to algebraic form and vice versa
8.7 Functions, Co-ordinates \& Graphs	Plot co-ordinates \& recognise their x and y values. Solve geometrical problems involving co-ordinates and shape properties.	Know 1. Co-ordinates are written in the (x, y) format 2. co-ordinates should be plotted with crosses 3. The x and y values correspond to the x and y in a function Know how to 1. write down co-ordinates of given point 2. draw a point with given co-ordinates 3. check whether a point exists in a given function or inequality 4. calculate distance between two points 5. find the co-ordinates of missing point using the properties of special quadrilaterals
8.7 Functions, Co-ordinates \& Graphs	Plot sets of co-ordinates that follow rules, e.g. $\mathrm{y}=5$ and $\mathrm{y}=3 \mathrm{x}-1$	Know 1. definition of Linear graphs and their structures including gradient and y intercepts 2. Common mistakes with drawing axes 3. How gradient and intercept affects linear graphs Know how to 1. Plot $\mathrm{x}=$ graphs 2. Plot $y=$ graphs 3. Plot $y=x$ graphs 4. Draw a pair of axes with any given scale 5. Read the scale from give axes 6. Plot $y=m x+c$ 7. link a given function with table of values and plotting a linear graph

8.7 Functions, Co-ordinates \& Graphs	Plot and recognise the graphs of quadratic and cubic graphs. Plot graphs of exponential growth.	Know 1, the definition and properties of quadratic graphs and how they link with sequences 2. the definition and properties of cubic graphs and how they link with sequences Know how to 1. use a scientific calculator to produce a table of values 2. plot quadratic graphs 3. plot cubic graphs
8.7 Functions, Co-ordinates \& Graphs	Read values from a graph and use graphs to solve simultaneous equations.	Know 1. solving equations can be done graphically. Read the x intercept 2. the structure of simultaneous equations 2. simultaneous equations can be solved graphically Know how to 1. use graphs to find x when y is given and vice versa 2. solve equations using graphs 3 . solve simultaneous equations graphically
8. Introduction to Statistics	Recognise how surveys and sampling methods can be biased. Record raw data into frequency tables, including grouped frequency tables. Recognise discrete, continuous, qualitative and quantitative data types.	Know: 1. the definition of bias 2. the definition of frequency 3. Understand inequality notation 4. the definition of qualitative 5. the definition of quantitative 6. the definition of discrete 7. the definition of Continuous Know how to: 1. how to design an affective questionnaire 2. to design and complete frequency tables 3. to design and complete a grouped frequency table 4. to identify and classify types of data
8. Introduction to Statistics	Draw and interpret pictograms, bar charts, pie charts and scatter graphs. Recognise how graphs can be misleading.	Know: 1. Features of a pictogram 2. Features of a bar chart Know How to: 1. draw a pictogram 2. Interpret a pictogram 3. draw a bar chart 4. Interpret a bar chart
8. Introduction to Statistics	Calculate the mean, median, mode and range of a set of listed data. Work backwards from knowing an average to working out missing data items.	Know: 1. The definition of mean 2. The definition of mode 3. The definition of median Know How to: 1. Find the mean of a seat of value 2. Find the missing number when given the mean 3. Find the mode of a set of data 4. Find the median of a set of data

9.2 Linear Graphs \& Gradient	Work out the equation of a line. Recognise the gradient and intercept from an equation.	Know 1. That the letter m represents the gradient of a line 2. That the letter c represents the y-intercept 3. A negative number for m implies a negative gradient Know how to 1. Work out the equation of a line when given the gradient and the y-intercept 2. Work out the equation of a line when given a graph 3. Identify the gradient and y-intercept even when the formula requires rearranging, e.g. $3 y+6 x-2=0$
9.2 Linear Graphs \& Gradient	Plot and use graphs in context. Recognise the meaning of the gradient and y intercept for real life graphs.	Know 1. Y-intercept refers to the starting amount of a situation Know how to 1. Apply the knowledge of $y=m x+c$ to real-life graphs and the meaning attached 2. Know what the gradient represents in straight line graphs in context, i.e. change in rate of something (a variable).
9.3 Transformations	Translate a shape by a given vector.	Know 1. Basic vector notation Know How to 1. Write a vector from words, e.g. " 3 right, 4 down" 2. Translate a shape by a given vector 3. Describe a translation when given two shapes that have been translated
9.3 Transformations	Reflect shapes in horizontal, vertical and diagonal mirror lines.	Know 1. Equations of horizontal and vertical lines on a graph Know how to 1. Draw an equation of a given vertical or horizontal line 2. Reflect a shape from a given horizontal and vertical line 3. Reflect a shape on a diagonal line, e.g. $y=x$ 4. Describe a reflection from a given diagram of a reflected shape
9.3 Transformations	Rotate shapes around a given point.	Know 1. The difference between rotate, translate and reflect 2. The difference between clockwise and anti-clockwise Know how to 1. Rotate a shape 90 degrees clockwise or anti-clockwise 2. Rotate a shape 180 degrees and understand why clockwise or anti-clockwise will have no effect on the final answer 3. Rotate a shape up to 270 degrees either clockwise or anti-clockwise 4. Describe a rotation including identifying the point of rotation
9.3 Transformations	Enlarge shapes by positive integer and fractional scale factors. Enlarge shapes by negative scale factors.	Know 1. Enlargement by a number greater than 1 will cause a shape to become bigger 2. Enlargement scale factor less than 1 will cause a shape to become smaller Know how to 1. enlarge a shape by a scale factor 2. enlarge a shape by a fractional scale factor 3. describe an enlargement between two shapes including identifying the coordinate for the enlargement point 4. enlarge a shape by a negative scale factor
9.3 Transformations	Describe transformations and combine transformations. Recognise points of invariance.	Know 1. What a point of invariance is Know how to 1. Perform more than one transformation on a given shape 2. Describe more than one transformation that has been done on a shape sometimes condensing two transformations into a single transformation 3. Identify points of invariance

9.4 Non-Calculator Ratio \& Proportion	Use ratio notation, simplify ratio and identify equivalent ratio. Write ratio in the form n:1 or 1:n.	Know 1. The form $1: n$ or $n: 1$ 2. The shape of direct and indirect proportion graphs Know how to 1. Write a ratio for a given set of items 2. Simplify a ratio even when conversion is necessary beforehand, e.g. $£ 3.50: 90$ p 3. Write a ratio in the form $1: \mathrm{n}$ or $\mathrm{n}: 1$ 4. Apply 1:n ratios to direct proportion questions, e.g. best buy situations 5. Use indirect proportion to solve problems 6. Can apply algebra to solve proportion problems
9.4 Non-Calculator Ratio \&	Convert between ratios, fractions and percentages. Share in a given ratio.	Know 1. The relationship between ratios and fractions Know how to 1. Convert basic ratios into fractions and percentages without a calculator 2. Convert all types of ratios into fractions and percentages using a calculator, including 3. Know how to use a bar model to represent ratios 4. Can use a bar model to share a given amount in a ratio 5. Can use a bar model to find the whole when one part is known 6. Can use a bar model to find the whole when the difference is known between two of the ratios.
9.5 Angles \& Similarity	Review of angle notation, angles on straight lines, in triangles, quadrilaterals and around parallel lines.	Know 1. Angle notation, i.e. angle DEF. 2. Different types of angles in parallel lines Know how to 1. Calculate missing angles on a straight line and around a point 2. Calculate missing angles in triangles, including isosceles 3. Calculate missing angles in quadrilaterals, including special shapes, e.g. kites 4. Calculate missing angles in parallel lines 5. Can apply their knowledge of angle rules to combine rules to solve problems
9.5 Angles \& Similarity	Recognise and name polygons. Calculate interior and exterior angles in polygons.	Know 1. The names of all polygons up to and including decagons 2. The difference between regular and irregular shapes Know how to 1. Calculate exterior angles of regular polygons using 360/n 2. Calculate the interior angle of a regular polygon 3. Calculate a missing interior angle of an irregular polygon 4. Can combine knowledge of interior and exterior angles to find a missing angle when two or more polygons are put together
9.5 Angles \& Similarity	Identify similar shapes. Use similarity to find missing information.	Know 1. Scale factors connect similar shapes which can be written either as a multiplier or in a ratio format. 2. Angles are the same in similar shapes Know how to 1. Write similar shapes as ratios 2. Use integer scale factors to find missing sides 3. Use non-integer scale factors to find missing sides 4. Find missing lengths in similar triangles, including triangles within triangles.
9.6 Pythagoras \& Trigonometry	Calculate missing lengths in right angled triangles using the Pythagorean theorem. Recognise Pythagorean triples and prove a triangle is right angled.	Know 1. Hypotenuse of a right-angle triangle 2. Pythagoras formula 3. Pythagorean triples Know how to 1. Use Pythagoras to find the hypotenuse of a right-angle triangle 2. Use Pythagoras to find a short side of a right-angle triangle 3. Use the Pythagoras formula to prove if a triangle is right angled. 4. Apply Pythagoras to different types of problems, e.g. the height of an isosceles triangles
9.6 Pythagoras \& Trigonometry	Use sin, cos and tan ratios to find missing sides and angles in right angled triangles.	Know 1. The sides of a right-angle triangle 2. Sin ratio formula 3. Cos ratio formula 4. Tan ratio formula Know how to 1. Use $\mathrm{Sin}, \mathrm{Cos}$ and Tan on a calculator to find a decimal number for an angle and also to do the inverse to find an angle 2. Label the sides of a right-angle triangle 3. Use $\mathrm{Sin}, \mathrm{Cos}$ and Tan to find a missing angle in a right-angle triangle 4. Use $\mathrm{Sin}, \mathrm{Cos}$ and Tan to find a missing side in a right-angle triangle

9.7 Probability	Describe probabilities on the probability scale. Recognise mutually exclusive outcomes.	Know 1. Words related to probability 2. Which type of events are mutually exclusive 3. Understand what type of events are mutually exclusive 4. Exhaustive events add up to 1 Know how to 1. Can plot probability of events on a probability scale 2. State simple probability for different types of events from given information 3. Calculate a missing probability by using the knowledge exhaustive events add up to 1 or 100%.
9.7 Probability	Use sample space diagrams. Systematically list all the outcomes of an event. Use the product rule for counting with independent and dependent events.	Know 1. Dependent versus independent events Know how to 1. Complete a sample space diagram and use it to calculate probabilities of events 2. Systematically list all the different outcomes for an event 3. Use the product rule for calculating the number of events for both dependent and independent events
9.7 Probability	Calculate relative frequencies. Work out expectation. Identify fair and biased events.	Know 1. Difference between bias versus unbiased outcomes Know how to 1. Calculate relative frequencies from a set of data 2. Calculate expectation of an event occurring once the relative frequency of an event has been calculated 3. Use relative frequency to decide whether an outcome of events is biased or not biased.
9.7 Probability	Use frequency trees, two-way tables \& Venn diagrams to sort and analyse data.	Know 1. Venn diagram notation and meaning including: union, intersect, universal set, belongs to and empty set 2. Complement notation and meaning Know how to 1. Construct frequency trees and find probabilities 2. Construct two-way tables and find probabilities 3. Construct Venn diagrams and find probabilities
9.8 Maps \& Constructions	Measure bearings and use map scales. Calculate bearings using angle facts.	Know 1. Correct format for bearings (clockwise, 3 figures, from north) Know how to 1. Measure bearings using a protractor from one point to another 2.Measure and draw bearings at a set distance using maps and scales 3.Find bearings using angle rules on lines and around points 4.Find bearings using right angles trigonometry
9.8 Maps \& Constructions	Construct the locus of points from a point or a line. Find the points equidistant from two points or two lines. Bisect a line or an angle. Construct the perpendicular to a point.	Know 1. The definition of Loci 2.When to use perpendicular bisect and angle bisector to find equidistant points. Know how to 1. Construct the locus of points from a point or a line 2.Construct the perpendicular bisector of a line 3. Find the points equidistance from two points 4. Construct the angle bisector 5. Find the points equidistant from 2 lines 6.Construct the perpendicular to a point 7. Use loci to find regions 8. Construct loci using map scales
9.8 Maps \& Constructions	Construct triangles accurately using a protractor. Identify congruent triangles.	Know 1.Definition of congruence Know how to 1.Construct ASA and SAS triangles using a protractor 2.Construct SSS triangles using a pair of compasses 3. Identify congruent triangles using SAS, AAS, RSS and SSS rules
9.8 Maps \& Constructions	Draw the plans and elevations of a shape. Identify a shape from its plans and elevations.	Know 1. The orientation of plan, front and side views 2.Conventions for drawing plans and elevations i.e. dashed lines for hidden edges Know how to 1.Draw plan, front and side elevations of 3D shapes 2.Identify a 3D shape from its plan, front and side elevations

9.9 Percentages (Calculato Methods)	Use a decimal multiplier to calculate a percentage of an amount, to increase or decrease by a percentage and to calculate the percentage changed. Calculate percentage profit and loss.	Know 1.Definition of interest Know how to 1. Use decimal multiplier to calculate percentage of an amount 2. Use decimal multiplier to calculate percentage increase or decrease 3.Use decimal multiplier to calculate percentage change Calculate percentage profit and loss
9.9 Percentages (Calculato Methods)	Solve original amount problems and calculate successive percentage changes, including compound interest.	Know 1.Difference between simple interest and compound interest 2.Definitions of exponential growth and decay and their relative graphs Know how to 1.Calculate reverse percentage problems to find the original amount 2.Calculate repeated percentage change using decimal multipliers 3.Calculate compound interest using decimal multipliers 4.Calculate using exponential growth and decay

4. Rearranging Equations and Using Functions	1. Change the subject 2. Use and solve with formulas for area 3. Substitution	Know: 1. To know the difference between equation, expression, inequalities and formulae 2. To know the formulas for area of shapes 3. To know the formulas for volume of 3D shapes 4. To know the difference between area and perimeter Know how to: 1. Change the subject of a simple formulae 2. Use perimeter, area and volume formula to solve problems 3. Apply the formulae for sector area and arc length 4. Use the formula for volume of a pyramid 5. Change the subject of more complex formulae (excluding those where the subject appears more than once) 6. Solve problems using the kinematics formulae 7. Change the subject of a formula where the subject appears more than once 8. Work with basic functions, substituting in values 9. Work with composite and inverse functions
5. Geometric Reasoning	1. Find values of missing angles including algebraically 2. Use the sine and cosine rule 3. Circle Theorems	Know: 1. Properties of 2D and 3D shapes 2. Pythagoras' Theorem 3. Formulas for sine and cosine rule Know how to: 1. Use chains of reasoning to evaluate angles 2. Find angles using algebraic methods 3. Use the formula $1 / 2 \mathrm{abSinC}$ to find the area of a triangle 4. Understand and use the sine rule to find missing sides and angles 5. Understand and use the cosine rule to find missing sides and angles 6. Circle Theorems Circle Theorems; Perpendicular line from the centre of a circle to a chord; Angle between a tangent and radius; Two tangents from a point and Alternate segment 7. Construct formal geometric proofs for circle theorems
6. Algebraic Reasoning	1. Laws of indices 2. Reasoning and algebraic proof	Know: 1. The definition of reciprocal 2. The basic laws of indices 3. To know squared and cubed numbers and their roots Know how to: 1. Understand and use basic laws of indices including power of zero and negative indices 2. Estimate powers and roots of any number 3. Work with complex indices including fractional and negative indices 4. Solve problems involving variation with powers 5. Construct formal algebraic proofs
7. Transforming and Constructing	1. Constructions and Bisectors 2. Loci 3. Bearings 4. Congruency 5. Transformation of graphs	Know: 1. To define key terms of, bisector, perpendicular, arc, locus, loci, congruent 2. To identify which construction meets the loci 3. To know what each trigonometric graph looks like 4. Know key values for sine, cosine, tangent Know how to: 1. Construct and angle bisector 2. Construct a perpendicular bisector 3. Construct a perpendicular to a given line from/at a given point 4. Calculate bearings using angle rules 5. Solve loci problems 6. Prove that two triangles are congruent 7. Understand and identify invariant points after a series of transformations 8. Recognise, sketch and interpret trigonometric graphs 9. Sketch translations and reflections of the graph of a given function

3. Multiplicative Reasoning	1. To work with ratio 2. Solve proportional problems 3. Rates of Change	Know: 1. To define direct and inverse proportion 2. Know what a ratio is and means 3. To know the difference between equation, expression, inequalities and formulae Know how to: 1. Combine ratio 2. Multi-step ratio problems 3. Solve inverse proportion problems 4. Link the gradient of a line $y=k x$ to proportion 5. Understand the gradient of a line as a ratio 6. Density, mass, volume calculations 7. Pressure, force, area calculations 8. Use ' k ' for direct and inverse proportion problems (include, squares, roots and cubes) 9. Identify and interpret inverse proportion graphs 10. Convert between compound units 11. Recognise the gradient at a point on a curve as the instantaneous rate of change 12. Calculate instantaneous rate of change 13. Calculate average rate of change
4. Rearranging Equations and Using Functions	1. Change the subject 2. Use and solve with formulas for area 3. Substitution	Know: 1. To know the difference between equation, expression, inequalities and formulae 2. To know the formulas for area of shapes 3. To know the formulas for volume of 3D shapes 4. To know the difference between area and perimeter Know how to: 1. Change the subject of a simple formulae 2. Use perimeter, area and volume formula to solve problems 3. Apply the formulae for sector area and arc length 4. Use the formula for volume of a pyramid 5. Change the subject of more complex formulae (excluding those where the subject appears more than once) 6. Solve problems using the kinematics formulae 7. Change the subject of a formula where the subject appears more than once 8. Work with basic functions, substituting in values 9. Work with composite and inverse functions
5. Geometric Reasoning	1. Find values of missing angles including algebraically 2. Use the sine and cosine rule 3. Circle Theorems	Know: 1. Properties of 2D and 3D shapes 2. Pythagoras' Theorem 3. Formulas for sine and cosine rule Know how to: 1. Use chains of reasoning to evaluate angles 2. Find angles using algebraic methods 3. Use the formula $1 / 2 a b S i n C$ to find the area of a triangle 4. Understand and use the sine rule to find missing sides and angles 5. Understand and use the cosine rule to find missing sides and angles 6. Circle Theorems Circle Theorems; Perpendicular line from the centre of a circle to a chord; Angle between a tangent and radius; Two tangents from a point and Alternate segment 7. Construct formal geometric proofs for circle theorems
6. Algebraic Reasoning	1. Laws of indices 2. Reasoning and algebraic proof	Know: 1. The definition of reciprocal 2. The basic laws of indices 3. To know squared and cubed numbers and their roots Know how to: 1. Understand and use basic laws of indices including power of zero and negative indices 2. Estimate powers and roots of any number 3. Work with complex indices including fractional and negative indices 4. Solve problems involving variation with powers 5. Construct formal algebraic proofs

Unit 2a: Data presentation and interpretation	2a. Calculation and interpretation of measures of location and measures of variation; Understand and use coding	Know how to 1. calculate measures of location, 2. calculate measures of mean, 3. calculate measures of median 4. calculate measures of mode 5. calculate measures of variation 6. calculate measures of standard deviation 7. calculate measures of variance 8. calculate measures of range 9. calculate measures of interquartile range 10. interpret and draw inferences from summary statistics
Unit 6: Quantities and units in mechanics	6a. Introduction to mathematical modelling and standard S.I. units of length, time and mass	Know 1. The language used to describe simplifying assumptions. 2. That units behave in the same way as algebraic quantities. Know how to 1. Understand the concept of a mathematical model. 2. Abstract from a real-world situation to a mathematical description (model). 3. Understand the particle model. 4. work with the basic terminology for mechanics. 5. work with commonly-made assumptions when using these models. 6. Analyse the model appropriately. 7. Interpret and communicate the implications of the analysis in terms of the situation being modelled. 8. Understand and use fundamental quantities and units in the S.I. system: length, time and mass.
Unit 6: Quantities and units in mechanics	6b. Definitions of force, velocity, speed, acceleration and weight and displacement; Vector and scalar quantities	Know 1. the difference between position, displacement and distance 2. the difference between velocity and speed 3. the difference between acceleration and magnitude of acceleration; 4. the difference between mass and weight (including gravity); 5. and understand that there are different types of forces. Know how to 1. use derived quantities and units: velocity, acceleration, force, weight;
Unit 7a: Kinematics 1 (constant acceleration)	7a. Graphical representation of velocity, acceleration and displacement	Know how to 1. Draw kinematics graphs. 2. Interpret kinematics graphs, knowing the significance (where appropriate) of their gradients and the areas underneath them.
Unit 2: Coordinate geometry in the (x, y) plane	2a. Straight-line graphs, parallel/perpendicular, length and area problems	Know 1. Understand the equation of a straight line. Know how to 1. Use the equation of a straight line. 2. Apply the gradient conditions for two straight lines to be parallel or perpendicular. 3. Find lengths using equations of straight lines. 4. Find areas using equations of straight lines. 5. Use straight-line graphs in modelling.
Unit 2: Coordinate geometry in the (x, y) plane	2b. Circles - equation of a circle, geometric problems on a grid	Know 1. The equation of a circle 2. The properties of chords and tangents. Know how to 1. Find the midpoint of a line segment. 2. Use the equation of a circle. 3. Use the equation of a circle. 4. Use the properties of chords and tangents.

Unit 5: Vectors (2D)	5a. Definitions, magnitude/direction, addition and scalar multiplication	Know how to 1. se vectors in two dimensions; 2. calculate the magnitude and direction of a vector and convert between component form and magnitude/direction form; 3. add vectors diagrammatically and perform the algebraic operations of vector addition and multiplication by scalars, and understand their geometrical interpretations.
Unit 5: Vectors (2D)	5b. Position vectors, distance between two points, geometric problems	Know 1. the properties of position vectors Know how to 1. use position vectors; 2. calculate the distance between two points represented by position vectors; 3 . vectors to solve problems in pure mathematics and in context, (including forces).
Unit 3: Probability	3a. Mutually exclusive events; Independent events	Know 1. the definitions of mutually exclusive and independent events Know how to 1. use mutually exclusive and independent events when calculating probabilities; 2. make links to discrete and continuous distributions.
Unit 4: Statistical distributions	4a. Use and identify discrete distributions; Calculate probabilities using the binomial distribution (calculator use expected)	Know 1. simple, discrete probability distributions, including the binomial distribution; Know how to 1. use simple, discrete probability distributions, including the binomial distribution; 2. identify the discrete uniform distribution; 3. calculate probabilities using the binomial distribution.
Unit 8a: Forces \& Newton's laws	8a. Newton's first law, force diagrams, equilibrium, introduction to i, j system	Know 1. and understand the concept of a force 2. and understand Newton's first law. Know how to 1. understand the concept of a force 2. use Newton's first law.
Unit 6: Differentiation	6a. Definition, differentiating polynomials, second derivatives	Know 1. and understand the derivative of $\mathrm{f}(x)$ is the gradient of the tangent to the graph of $y=\mathrm{f}(x)$ at a general point (x, y) 2. and understand the gradient of the tangent as a limit and its interpretation as a rate of change; 3. and understand differentiation from first principles for small positive integer powers of x Know how to 1. use the derivative of $\mathrm{f}(x)$ as the gradient of the tangent to the graph of $y=\mathrm{f}(x)$ at a general point (x, y) 2. sketch the gradient function for a given curve; 3. find second derivatives; 4. differentiate $x 2$ for rational values of n , and related constant multiples, sums and differences.
Unit 6: Differentiation	6b. Gradients, tangents, normals, maxima and minima	Know how to 1. apply differentiation to find gradients, tangents and normals, maxima and minima and stationary points; 2. identify where functions are increasing or decreasing.

Year 13		Know and Know how to
Topic	Key area	Learning Objectives (small steps)
Unit 3: Functions and modelling	3a. Modulus function	Know 1. what is meant by a modulus of a linear function; Know How to 2. to sketch graphs of functions involving modulus functions; 3 . to solve equations and inequalities involving modulus functions.
Unit 3: Functions and modelling	3b. Composite and inverse functions	Know 1. the definition of a one-one and a many-one mappings 2. and understand the condition for an inverse function to exist Know how to 1.to work out the domain and range of functions; 2. to work out the composition of two functions; 3. to work out the inverse of a function and sketch its graph;
Unit 3: Functions and modelling	3c. Transformations	Know 1. the effect of simple transformations on the graph of $y=\mathrm{f}(x)$ 2. the effect of composite transformations on equations of curves and be able to describe them geometrically Know how to 1. sketch associated graphs and combinations of the transformations: $y=a f(x)$, $y=\mathrm{f}(x)+a$, $y=\mathrm{f}(x+a)$, $y=\mathrm{f}(a x)$ 2. transform graphs to produce other graphs;
Unit 3: Functions and modelling	3d. Modelling with functions (trigonometric, exponential, reciprocal etc.)	Know how to 1. use functions in modelling, including consideration of limitations and refinements of the models.
Unit 4: Series and sequences	4a. Arithmetic and geometric progressions (proofs of sum formulae)	Know 1. what a sequence of numbers is and the meaning of finite and infinite sequences; 2. what a series is; 3. the difference between convergent and divergent sequences; 4. what is meant by arithmetic series and sequences; 5. what is meant by geometric series and sequences; 6. the condition for a geometric series to be convergent 7. the proofs and derivations of the sum formulae (for both AP and GP) Know how to 1. use the standard formulae associated with arithmetic series and sequences; 2. use the standard formulae associated with geometric series and sequences; 3. find its sum to infinity; 4. solve problems involving arithmetic and geometric series and sequences;
Unit 4: Series and sequences	4b. Sigma notation	Know 1. the definition of and be familiar with \sum notation and how it can be used to generate a sequence and series; 2. how this notation will lead to an AP or GP and its sum; that $\sum 1 n 1=n$
Unit 4: Series and sequences	4c. Recurrence and iterations	Know 1. that a sequence can be generated using a formula for the nth term or a recurrence relation of the form $x n+1=f(x n)$ 2. the difference between increasing, decreasing and periodic sequences; 2. and understand how a recurrence relation of the form $U n=\mathrm{f}(U n-1)$ can generate a sequence; Know how to 1. describe increasing, decreasing and periodic sequences.

Unit 6: Trigonometry	6d. Compound and double (and half) angle formulae; geometric proof of compound angle formula	Know how to 1. prove geometrically the following compound angle formulae for $\sin (A \pm B), \cos (A \pm B)$ and $\tan (A \pm B)$ 2. use compound angle identities to rearrange expressions or prove other identities; 3. use compound angle identities to rearrange equations into a different form and then solve; 4. recall or work out double angle identities; 5. use double angle identities to rearrange expressions or prove other identities; 6. use double angle identities to rearrange equations into a different form and then solve.
Unit 6: Trigonometry	$6 \mathrm{e} . \mathrm{R} \cos (x+/-a)$ or $R \sin (x+/-a)$	Know how to 1. express $\alpha \cos \theta+b \sin \theta$ as a single sine or cosine function; 2. solve equations of the form $\alpha \cos \theta+b \sin \theta=c$ in a given interval.
Unit 6: Trigonometry	6f. Proving trigonometric identities	Know how to 1. construct proofs involving trigonometric functions and previously learnt identities.
Unit 6: Trigonometry	6 g . Solving problems in context (E.g. mechanics)	Know how to 1. use trigonometric functions to solve problems in context, including problems involving vectors, kinematics and forces
Unit 7: Parametric equations	7a. Definition and converting between parametric and Cartesian forms	Know 1. and understand the difference between the Cartesian and parametric system of expressing coordinates; Know how to 1. convert between parametric and Cartesian forms.
Unit 7: Parametric equations	7b. Curve sketching and modelling	Know and recognise some standard curves in parametric form and how they can be used for modelling. Know how to plot and sketch curves given in parametric form;
Unit 2: Probability	2a. Using set notation for probability. Conditional probability	Know 1. and understand use probability formulae using set notation 2. and understand the conditional probability formula $\mathrm{P}(A \mid B)=\mathrm{P}(A \cap B) \mathrm{P}(B)$ Know how to 1. use probability formulae using set notation; 2. use tree diagrams, Venn diagrams and two-way tables; 3. use the conditional probability formula $\mathrm{P}(A \mid B)=\mathrm{P}(A \cap B) \mathrm{P}(B)$
Unit 2: Probability	2b. Questioning assumptions in probability	Know how to 1. model with probability; 2. critique assumptions made and the likely effect of more realistic assumptions.
Unit 5: Forces at any angle	5a. Resolving forces	Know 1. and understand the language relating to forces; Know how to 1. identify the forces acting on a particle and represent them in a force diagram; 2. find the resultant force (magnitude and direction); 3. find the resultant of several concurrent forces by vector addition; 4. resolve a force into components and be able to select suitable directions for resolution.

Unit 3a: The Normal distribution	3a: Understand and use the Normal distribution	Know 1. and understand the properties of the Normal distribution; 2. the position of the points of inflection of a Normal distribution. Know how to 1. find probabilities using the Normal distribution;
Unit 6: Applications of kinematic	6a. Projectiles	Know how to 1. find the time of flight of a projectile; 2. find the range and maximum height of a projectile; 3. derive formulae to find the greatest height, the time of flight and the horizontal range (for a full trajectory); 4. modify projectile equations to take account of the height of release; be able to derive and use the equation of the path.
Unit 10: Integration (part 1)	10a. Integrating $\mathbf{x}^{\wedge} \mathbf{n}$ (including when $\mathrm{n}=-1$), exponentials, trigonometric and parametrically defined functions	Know how to 1. integrate expressions by inspection using the reverse of differentiation; 2. be able to integrate $x n$ for all values of n and understand that the integral of $1 x$ is $\ln \|x\|$ 3. integrate expressions by inspection using the reverse of the chain rule (or function of a function); 4. integrate trigonometric expressions; 5. integrate expressions involving ex 6. integrate a function expressed parametrically;
Unit 10: Integration (part 1)	10b. Using the reverse of differentiation, and using trigonometric identities to manipulate integrals	Know 1. and recognise integrals of the form $\int \mathrm{f}^{\prime}(x) \mathrm{f}(x) \mathrm{d} x=\ln \|\mathrm{f}(x)\|+c$ Know how to 1. use trigonometric identities to manipulate and simplify expressions to a form which can be integrated directly.
Unit 11: Integration (part 2)	11a: Integration by substitution	Know how to 1. integrate expressions using an appropriate substitution; 2. select the correct substitution and justify their choices.
Unit 11: Integration (part 2)	11b. Integration by parts	Know how to 1. integrate an expression using integration by parts; 2. select the correct method for integration and justify their choices.
Unit 11: Integration (part 2)	11c. Use of partial fractions	Know How to 1. integrate rational expressions by using partial fractions that are linear in the denominator; 2. simplify the expression using laws of logarithms.
Unit 11: Integration (part 2)	11d. Areas under graphs (incl. curves expressed parametrically) or between 2 curves, incl. understanding area as limit of a sum	Know 1. and understand the integration as the limit of a sum; 2. and understand the difference between an indefinite and definite integral and why we do not need $+c$ Know how to 1. use integration as the limit of a sum; 2. integrate polynomials and other functions to find definite integrals, and 3 . use these to find the areas of regions bounded by curves and/or lines; be able to use a definite integral to find the area under a curve and the area between two curves. 4. be able to find an area under a curve defined by a pair of parametric equations.
Unit 11: Integration (part 2)	11e. The trapezium rule	Know 1. and appreciate the trapezium rule is an approximation and realise when it gives an overestimate or underestimate. Know how to 1. use the trapezium rule to find an approximation to the area under a curve;
Unit 11: Integration (part 2)	11f. Differential equations	Know how to write a differential equation from a worded problem; use a differential equation as a model to solve a problem; solve a differential equation; substitute the initial conditions or otherwise into the equation to find $+c$ and the general solution.
Unit 3b: The Normal distribution	3b. Use the Normal distribution as an approximation to the binomial distribution. Selecting the appropriate distribution	Know 1. and understand and be able to apply a continuity correction; Know how to 1. find the mean and variance of a binomial distribution; 2. use the Normal distribution as an approximation to the binomial distribution.

Unit 7: Applications of forces	7a. Equilibrium and statics of a particle (including ladder problems)	Know 1. and understand that a body is in equilibrium under a set of concurrent (acting through the same point) forces is if their resultant is zero; 2. that vectors representing forces in equilibrium form a closed polygon; 3. and understand how to solve problems involving equilibrium of a particle under coplanar forces, including particles on inclined planes and 2D vectors; Know how to 1. solve statics problems for a system of forces which are not concurrent (e.g. ladder problems), thus applying the principle of moments for forces at any angle.
Unit 7: Applications of forces	7b. Dynamics of a particle	Know know and understand the meaning of Newton's second law; Know how to formulate the equation of motion for a particle in 1-dimensional motion where the resultant force is mass \times acceleration; formulate the equation of motion for a particle in 2-dimensional motion where the resultant force is mass \times acceleration; formulate and solve separate equations of motion for connected particles, where one of the particles could be on an inclined and/or rough plane.
Unit 12: Vectors (3D)	12a. Use of vectors in three dimensions; knowledge of column vectors and i, j and k unit vectors	Know 1. the definition of a unit vector in 3D; 2. understand the position vectors, and calculate the distance between two 3D points represented by position vectors; Know how to 1. extend the work on vectors from AS Pure Mathematics to 3D with column vectors and with the use of i, j and k unit vectors; 2. calculate the magnitude of a 3D vector; 3. add 3D vectors diagrammatically and perform the algebraic operations of vector addition and multiplication by scalars, and understand their geometrical interpretations; 4. understand and use position vectors, and calculate the distance between two 3D points represented by position vectors; 5. use vectors to solve problems in pure mathematics and in contexts (e.g. mechanics).
Unit 3c: The Normal distribution	3c. Statistical hypothesis testing for the mean of the Normal distribution	Know how to conduct a statistical hypothesis test for the mean of the Normal distribution; interpret the results in context.
Unit 8: Further kinematics	8a. Constant acceleration (equations of motion in 2D; the i, j system)	Know 1. and understand the suvat formulae for constant acceleration in 2 D ; Know how to 1. recognise when the use of constant acceleration formulae is appropriate; 2. write positions, velocities and accelerations in vector form; 3. understand the language of kinematics appropriate to motion in 2 dimensions 4. find the magnitude and direction of vectors; 5. extend techniques for motion in 1 dimension to 2 dimensions by using vectors; 6. use velocity triangles to solve simple problems; 7. understand and use suvat formulae for constant acceleration in 2D; 8. apply the equations of motion to \mathbf{i}, \mathbf{j} vector problems; 9. use $v=u+a t, r=u t+12 a t 2$ etc. with vectors given in i, j or column vector form.
Unit 8: Further kinematics	8b. Variable acceleration (use of calculus and finding vectors \dot{r} and \check{r} at a given time)	Know 1. and understand the language and notation of kinematics appropriate to variable motion in 2 dimensions, i.e. knowing the notation r^{*} and $r^{\prime \prime}$ for variable acceleration in terms of time. Know how to 1. extend techniques for motion in 1 dimension to 2 dimensions by using 2 . calculus and vector versions of equations for variable force/acceleration problems;

[^0]: $+$

[^1]: －
 $+$

